TRAVAIL DIRIGE

Travail dirigé

Vérifier les performances cinématiques - généralités

1 Établissement des équations horaires à partir du vecteur accélération

1.1 En translation

Soit un mobile soumis à une accélération dont le vecteur accélération est écrit un vecteur ligne :

$$\overrightarrow{a} = a_x \cdot \overrightarrow{x} + a_y \cdot \overrightarrow{y} + a_z \cdot \overrightarrow{z}$$

Avec:

- $a_x = constante$
- $a_x = constante$
- $a_x = constante$

Écrire ce vecteur accélération \overrightarrow{d} en vecteur colonne.

Déterminer l'expression du vecteur vitesse \overrightarrow{v}

Déterminer l'expression du vecteur position \overrightarrow{s} .

January 14, 2024 Page 1/6

1.2 En rotation

Soit un mobile soumis à une accélération angulaire dont le vecteur accélération est écrit un vecteur ligne :

Travail dirigé

$$\overrightarrow{\alpha} = \alpha_x \cdot \overrightarrow{x} + \alpha_y \cdot \overrightarrow{y} + \alpha_z \cdot \overrightarrow{z}$$

Avec:

- $\alpha_x = constante$
- $\alpha_x = constante$
- $\alpha_x = constante$

Écrire ce vecteur accélération angulaire $\overrightarrow{\alpha}$ en vecteur colonne

Déterminer l'expression du vecteur vitesse $\overrightarrow{\Omega}$

Déterminer l'expression du vecteur position $\overrightarrow{\theta}$

January 14, 2024 Page 2/6

2 Établissement des équations horaires à partir du vecteur position

Soit un mobile dont les équations horaires sont données par le vecteur position écrit un vecteur ligne :

$$\overrightarrow{s} = (\frac{t^3}{3} + 2t + 1.5) \cdot \overrightarrow{x} + (\frac{t^3}{6} + \frac{t^2}{2} + 1) \cdot \overrightarrow{y} + (-4t + 3) \cdot \overrightarrow{z}$$

Écrire ce vecteur en vecteur colonne et **Déduire** les positions initiales en x_0 , y_0 et z_0 .

Déterminer les composantes de position à l'instant t = 2s ainsi que la distance du mobile (la norme) par rapport à sa position initiale de référence.

Déterminer l'expression du vecteur vitesse \overrightarrow{v} et **déduire** les vitesses initiales v_{x0} , v_{y0} et v_{z0} .

Déterminer les composantes de vitesse à l'instant t=2s ainsi que la vitesse du mobile (la norme) atteinte à cet instant précis.

January 14, 2024 Page 3/6

Déterminer l'expression du vecteur accélération \overrightarrow{d} .					
Déterminer les composantes de accélération à l'instant $t=2s$ ainsi que l'accélération du mobile (la norme) à cet instant précis.					
3 Analyse à partir d'un profil d'accélération					
Un objet est animé par un profil d'accélération décrit ci-après :					
\bullet accélération constante égale à 3 $m\cdot s^{-2}$ pour $t\in [0;1\ s]$					
\bullet accélération nulle pour $t \in [1\ s; 3\ s]$					
• accélération constante égale à $-3 \ m \cdot s^{-2}$ pour $t \in [3 \ s; 4 \ s]$					
1. Tracer le profil d'accélération.					

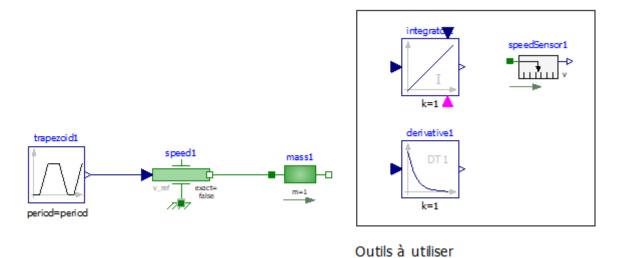
2. **Déterminer** la vitesse atteinte à l'instant t = 2 s et à l'instant t = 4 s

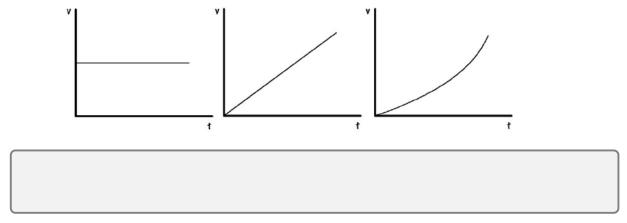
January 14, 2024 Page 4/6

3. En déduire le profil de vitesse.

4. **Déterminer** la distance parcourue aux instants t = 1 s et t = 4 s

5. À partir du modèle OpenModelica $TD1_cinematique_partie3.mo$ ci-dessous partiellement complété




Figure 1: Modèle OpenModelica

- 6. Enrichir le modèle pour :
 - $\bullet\,$ solliciter l'objet avec le profil de vitesse obtenu question 3 ;
 - obtenir le profil d'accélération ;
 - obtenir le profil de position;
 - 7. **Relever** le profil de position et **comparer** avec les résultats obtenus avec les résultats obtenus à la question 4.

January 14, 2024 Page 5/6

4 Analyses de profils

1. Voici 3 graphiques de la vitesse en fonction du temps v=f(t). Lequel représente le mieux celui d'un mobile dont l'accélération est constante et non-nulle?

2. Que peut-on dire du mouvement de chaque mobile dont les graphiques sont illustrés ci-avant?

		Graphique 1	Graphique 2	Graphique 3
a.	La vitesse est nulle			
b.	La vitesse est constante			
c.	La vitesse augmente			
d.	L'accélération est nulle			
e.	L'accélération est constante			
f.	L'accélération augmente			

3. Voici trois graphiques donnant la position en fonction du temps de trois mobiles.

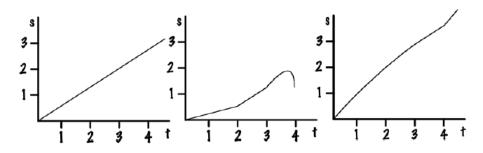


Figure 2: Profil de position s = f(t)

- (a) À Quel temps les trois mobiles ont-ils la même vitesse?
- (b) Quelle est la vitesse moyenne de chaque mobile entre t=0s et t=3s?
- (c) Quel mobile atteint la plus grande vitesse? À quel temps atteint-il cette vitesse?
- (d) Quel mobile a reculé pendant le parcours?
- (e) Quel mobile s'est déplacé à vitesse constante?

January 14, 2024 Page 6/6