## Départ d'un TGV

Un TGV Atlantique part d'une gare (trajet supposé en ligne droite). Le conducteur active la commande de démarrage qui permet de maintenir la force d'entraînement effective  $\overrightarrow{F}_e = 100\,kN$  supposée constante. La rame complète (2 motrices + 10 remorques) pèse 485 tonnes.

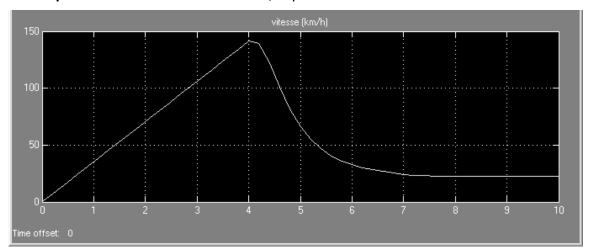
Le Crr est de 0,0003.

On ne prendra pas en compte la traînée aérodynamique générant la résolution d'une équation différentielle.

- > Calculer la résistance au Rr.
- > Calculer l'accélération de la rame.
- ➤ Calculer le temps mis pour atteindre la vitesse de 300 km/h.
- Indiquer sommairement quelle serait l'influence de la traînée aérodynamique sur les valeurs calculées ?

## Modélisation

Le modèle fourni suivant n'intègre ni la résistance au roulement, ni la traînée aérodynamique.


> Compléter le modèle pour prendre en compte ces dernières (  $C_{x_{\rm TGV}} = 0.55$  , surface frontale  $S_f = 9\,m^2$  )

modèle à télécharger: Modèle OpenModelica

# Ouverture d'un parachute

La modélisation d'un saut en parachute donne le profil de vitesse de descente ci-dessous. La masse du parachutiste avec son matériel est de 100 kg. Le diamètre du parachute est de 8 m.

- Repérer dans ce profil, l'instant de l'ouverture du parachute, ainsi que les phases d'accélération, de décélération, de vitesse constante.
- > Indiquer si au moment de l'ouverture, le parachutiste remonte vers le haut ?



L'action du parachute est modélisée ici par :

$$\vec{F}_{Para} = -\frac{1}{2} \rho \cdot S \cdot C_z \cdot v^2 \vec{v}$$

avec:

- $\rho$  : masse volumique de l'air (1,2 kg.s<sup>-1</sup>)
- S: surface du disque formé par le parachute (m²)
- v : vitesse du parachutiste (m.s<sup>-1</sup>)
- Cz : Coefficient de prénétration dans l'air selon l'axe  $\vec{z}$
- $\vec{v}$  vecteur vitesse unitaire

Nous cherchons à déterminer à quelle valeur la vitesse de descente se stabilise.

On isole l'ensemble parachute + parachutiste :

- ➤ **Réaliser** un BAME sur l'ensemble parachute + parachutiste
- **Etablir** l'équation régissant l'évolution de la vitesse de chute du parachutiste.
- Indiquer la nature de l'équation trouvée (polynome ou autre?)

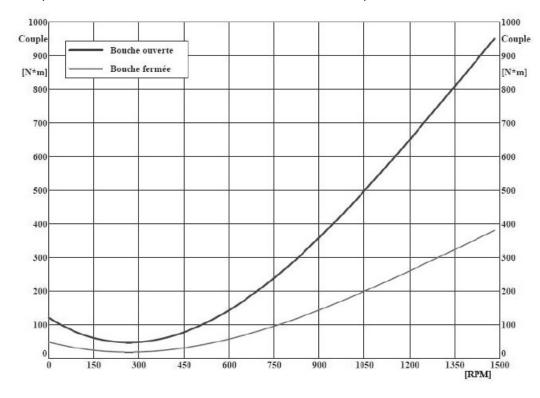
#### Simulation

Le modèle fourni suivant vous permettra de trouver la vitesse de stabilisation atteinte par le parachutiste une fois le parachute ouvert.

Modèle à télécharge : Modèle OpenModelica

#### Fonctionnement d'un ventilateur

Le ventilateur est soumis au cours de son fonctionnement à deux types d'actions mécaniques :


- une action mécanique due au moteur : le moteur crée un ensemble de forces dont les moments se conjuguent de façon à entraîner la rotation : cet ensemble forme le **couple moteur** *Cm*.
- une action mécanique due à l'air : les effets de l'air créent un ensemble de forces sur les pâles dont les moments se conjuguent de façon à freiner la rotation : cet ensemble forme le couple résistant Cr.

Nous étudions le cas d'un ventilateur dont le moteur fournit un couple moteur  $C_m = 500 \, N \cdot m$  (supposé constant quelle que soit la vitesse) et dont le couple résistant dû à l'air est donné par la courbe ci-dessous (courbe : « bouche d'aération ouverte »). Le moment d'inertie du ventilateur motorisé est  $J = 150 \, kg \cdot m^2$  par rapport à son axe de rotation. Ce ventilateur doit mettre moins d'une minute pour démarrer.

- ➤ **Indiquer** la relation issue du PFD à utiliser dans ce cas.
- **Réaliser** un schéma simple faisant apparaître le BAME si on isole le ventilateur.
- **Exprimer** le couple moteur Cm en fonction de Cr.
- Simplifier l'équation trouvée aux instants suivant :
  - X Au démarrage (juste à la mise sous tension du moteur du ventilateur)
  - x En régime établi (permanent).



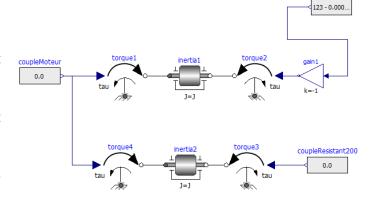
La figure suivant montre l'évolution du couple résistant Cr en fonction de la fréquence de rotation du ventilateur (on travaillera sur la courbe en « boucle ouverte »).



À partir des données précédentes des équations simplifiées :

- > **Déterminer** l'accélération angulaire de démarrage
- Déterminer à quelle fréquence de rotation le ventilateur va se stabiliser.

Pour la question suivante on considère que tout se passe comme si le couple résistant avait une valeur constante  $C_r = 200 \, N \cdot m$  (ce qui est évidemment faux!)


- Vérifier que le temps de démarrage est conforme aux attentes.
- Indiquer sommairement l'influence de l'évolution du couple résistant réel (non constant) sur le temps calculer précédemment.

### Simulation

Le modèle suivant va vous permettre de confronter vos résultats avec la simulation y compris de simuler le fonctionnement réel avec la caractéristique de couple résistant Cr que nous avons considéré constant.

Modèle à télécharger: Modèle OpenModelica

- Paramétrer le modèle en enrichissant les valeurs absentes (ne pas modifier le paramètre (« coupleResistantReel »).
- Comparer à vos résultats théoriques et à votre conclusion sur l'influence de couple réel sur la vitesse atteinte (dernière question de la partie théorique)

